Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172305, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593872

RESUMO

Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.

2.
Ecotoxicol Environ Saf ; 275: 116260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564867

RESUMO

Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Galinhas , Leucina , Proteína Relacionada ao Hormônio Paratireóideo , Disbiose
3.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229401

RESUMO

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Assuntos
Bacillus licheniformis , Enteropatias , Probióticos , Animais , Camundongos , Bovinos , Antibacterianos/farmacologia , Suplementos Nutricionais , Probióticos/farmacologia , Enteropatias/microbiologia , Firmicutes/genética , Cefalexina
4.
Cell Commun Signal ; 22(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169388

RESUMO

BACKGROUND: The B-cell lymphoma 2 (Bcl-2) protein regulates programmed cell death throughout the disease conditions by upholding apoptotic pathways. However, the mechanism by which it's expressed in chondrocytes still needs to be studied in chondrocyte-related disorders. Additionally, exploring the potential therapeutic role of Chlorogenic acid (CGA) in confluence with Bcl-2 modulation is of significant interest. METHODS: In vivo and in vitro studies were performed according to our previous methodologies. The chondrocytes were cultured in specific growth media under standard conditions after expression verification of different microRNAs through high-throughput sequencing and verification of Bcl-2 involvement in tibial growth plates. The effect of Bcl-2 expression was investigated by transfecting chondrocytes with miR-460a, siRNA, and their negative controls alone or in combination with CGA. The RNA was extracted and subjected to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot analysis and immunofluorescence assays were performed to visualize the intracellular localization of Bcl-2 and associated proteins related to apoptotic and inflammasome pathways. Moreover, apoptosis through flow cytometry was also performed to understand the modulation of concerning pathways. RESULTS: The suppression of Bcl-2 induced higher apoptosis and mitochondrial dysfunction, leading to IL-1ß maturation and affecting the inflammasome during chondrocyte proliferation. Conversely, overexpression attenuated the activation, as evidenced by reduced caspase activity and IL-1ß maturation. In parallel, CGA successfully reduced siRNA-induced apoptosis by decreasing Cytochrome C (Cyto C) release from the mitochondria to the cytoplasm, which in turn decreased Caspase-3 and Caspase-7 cleavage with Bcl-2-associated X protein (Bax). Furthermore, siBcl-2 transfection and CGA therapy increased chondrocyte proliferation and survival. The CGA also showed a promising approach to maintaining chondrocyte viability by inhibiting siRNA-induced apoptosis. CONCLUSIONS: Targeting Bcl-2-mediated regulation might be a possible treatment for chondrocyte-related conditions. Moreover, these results add knowledge of the complicated processes underlying chondrocyte function and the pathophysiology of related diseases, highlighting the significance of target specific therapies. Video Abstract.


Assuntos
Condrócitos , MicroRNAs , Condrócitos/metabolismo , Inflamassomos/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Apoptose , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Interleucina-1beta/metabolismo
5.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926310

RESUMO

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Animais , Bovinos , Multiômica , Tibet , Metabolômica , Suplementos Nutricionais , Bactérias , Polissacarídeos/farmacologia , RNA Ribossômico 16S
6.
Animals (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136788

RESUMO

Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-ß (TGF-ß), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.

7.
Ecotoxicol Environ Saf ; 268: 115689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992645

RESUMO

Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.


Assuntos
Osteocondrodisplasias , Tiram , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Condrócitos/patologia , Caspase 9/genética , Coxeadura Animal , Apoptose , Neovascularização Patológica/induzido quimicamente , Proliferação de Células
8.
MethodsX ; 11: 102450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023301

RESUMO

The mechanical-double enzyme method was used in the current study to isolate and culture primary chondrocytes from the chicken growth plates. The feasibility and practicability of the approach were determined by using trypan blue staining, toluidine blue staining, PCR, and flow cytometry. The immunofluorescence assay was also used to effectively identify chondrocytes, demonstrating the expression of chondrocyte-specific secreted products (Col-II and Aggrecan). The exterior morphology of chondrocytes was studied at several stages, revealing significant changes in cell shape with each generation. Notably, compared to earlier approaches, the mechanical-double enzyme strategy revealed enhanced cell adhesion and much reduced apoptosis rates. The findings indicate that this novel method has great potential for efficient primary chondrocytes culture, providing important insight into chondrocyte ba research and future applications in cartilage tissue engineering. The following technical points are included in this method:•Isolation and culturing primary chondrocytes by a mechanical-double enzyme approach.•The evaluation of cell adhesion and apoptosis of mechanical double enzyme approach as compared to previous approaches.•The confirmation of chondrocyte-specific secreted products' expression via toluidine blue staining, PCR, and immunofluorescence assays.

9.
Int J Biol Macromol ; 251: 126312, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573920

RESUMO

Heavy metal contamination especially lead (Pb) causes a serious threat to global public health. In the current study, we explored the protective and regulating effects of Emblica officinalis polysaccharide (EOP) in the liver against Pb-induced toxicity. According to our findings, EOP decreased the Pb-induced pathological lesions of liver and overall weight index in mice (p < 0.05). Following treatment with EOP, the levels of biological biomarkers for liver hepatic function (i.e., ALT and AST) were significantly decreased (p < 0.01) in a dose-dependent manner, consisted with histopathological changes. The key proteins involved in hepatic oxidative stress and apoptosis, including Nrf2, HO-1, Bcl-2, and Bax were quantified, which indicated EOP as an effective approach in protecting against the liver injury. Moreover, EOP treatment ameliorated the negative changes of liver metabolic profile (i.e., metabolites concentrations and metabolic patterns). In conclusion, EOP could protect the liver against oxidative stress and apoptosis induced by Pb poisoning, associated with the efficacy of ameliorating the negative changes in liver metabolic profile. Hence, the current findings recommend EOP as an efficient way for alleviating liver injury in lead poisoning.

11.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446153

RESUMO

There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.


Assuntos
MicroRNAs , Osteocondrodisplasias , Humanos , Condrócitos/metabolismo , Tiram , Osteocondrodisplasias/metabolismo , Diferenciação Celular/genética , MicroRNAs/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo
12.
Microb Cell Fact ; 22(1): 88, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127628

RESUMO

Acetic acid and furfural (AF) are two major inhibitors of microorganisms during lignocellulosic ethanol production. In our previous study, we successfully engineered Zymomonas mobilis 532 (ZM532) strain by genome shuffling, but the molecular mechanisms of tolerance to inhibitors were still unknown. Therefore, this study investigated the responses of ZM532 and its wild-type Z. mobilis (ZM4) to AF using multi-omics approaches (transcriptomics, genomics, and label free quantitative proteomics). Based on RNA-Seq data, two differentially expressed genes, ZMO_RS02740 (up-regulated) and ZMO_RS06525 (down-regulated) were knocked out and over-expressed through CRISPR-Cas technology to investigate their roles in AF tolerance. Overall, we identified 1865 and 14 novel DEGs in ZM532 and wild-type ZM4. In contrast, 1532 proteins were identified in ZM532 and wild-type ZM4. Among these, we found 96 important genes in ZM532 involving acid resistance mechanisms and survival rates against stressors. Furthermore, our knockout results demonstrated that growth activity and glucose consumption of mutant strains ZM532∆ZMO_RS02740 and ZM4∆ZMO_RS02740 decreased with increased fermentation time from 42 to 55 h and ethanol production up to 58% in ZM532 than that in ZM532∆ZMO_RS02740. Hence, these findings suggest ZMO_RS02740 as a protective strategy for ZM ethanol production under stressful conditions.


Assuntos
Ácido Acético , Zymomonas , Ácido Acético/metabolismo , Zymomonas/genética , Furaldeído/metabolismo , Embaralhamento de DNA , Fermentação , Etanol/metabolismo
13.
Viruses ; 15(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37112860

RESUMO

Lumpy skin disease virus (LSDV) is capable of causing transboundary diseases characterized by fever, nodules on the skin, mucous membranes, and inner organs. The disease may cause emaciation with the enlargement of lymph nodes and sometimes death. It has had endemic importance in various parts of Asia in recent years, causing substantial economic losses to the cattle industry. The current study reported a suspected LSDV infection (based on signs and symptoms) from a mixed farm of yak and cattle in Sichuan Province, China. The clinical samples were found positive for LSDV using qPCR and ELISA, while LSDV DNA was detected in Culex tritaeniorhynchus Giles. The complete genome sequence of China/LSDV/SiC/2021 was determined by Next-generation sequencing. It was found that China/LSDV/SiC/2021 is highly homologous to the novel vaccine-related recombinant LSDV currently emerging in China and countries surrounding China. Phylogenetic tree analysis revealed that the novel vaccine-associated recombinant LSDV formed a unique dendrograms topology between field and vaccine-associated strains. China/LSDV/SiC/2021 was found to be a novel recombinant strain, with at least 18 recombination events via field viruses identified in the genome sequence. These results suggest that recombinant LSDV can cause high mortality in yaks, and its transmission might be due to the Culex tritaeniorhynchus Giles, which acts as a mechanical vector.


Assuntos
Culex , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Filogenia , Mosquitos Vetores , Surtos de Doenças/veterinária
14.
Front Cell Infect Microbiol ; 13: 1105126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936759

RESUMO

Diarrhea is a severe bovine disease, globally prevalent in farm animals with a decrease in milk production and a low fertility rate. Cryptosporidium spp. are important zoonotic agents of bovine diarrhea. However, little is known about microbiota and short-chain fatty acids (SCFAs) changes in yaks infected with Cryptosporidium spp. Therefore, we performed 16S rRNA sequencing and detected the concentrations of SCFAs in Cryptosporidium-infected yaks. Results showed that over 80,000 raw and 70,000 filtered sequences were prevalent in yak samples. Shannon (p<0.01) and Simpson (p<0.01) were both significantly higher in Cryptosporidium-infected yaks. A total of 1072 amplicon sequence variants were shared in healthy and infected yaks. There were 11 phyla and 58 genera that differ significantly between the two yak groups. A total of 235 enzymes with a significant difference in abundance (p<0.001) were found between healthy and infected yaks. KEGG L3 analysis discovered that the abundance of 43 pathways was significantly higher, while 49 pathways were significantly lower in Cryptosporidium-infected yaks. The concentration of acetic acid (p<0.05), propionic acid (p<0.05), isobutyric acid (p<0.05), butyric acid (p<0.05), and isovaleric acid was noticeably lower in infected yaks, respectively. The findings of the study revealed that Cryptosporidium infection causes gut dysbiosis and results in a significant drop in the SCFAs concentrations in yaks with severe diarrhea, which may give new insights regarding the prevention and treatment of diarrhea in livestock.


Assuntos
Criptosporidiose , Cryptosporidium , Microbiota , Bovinos , Animais , Cryptosporidium/genética , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Diarreia/veterinária , Ácido Butírico , Intestinos
15.
Microb Cell Fact ; 22(1): 30, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803386

RESUMO

BACKGROUND: Given the crucial role of gut microbiota in animal and human health, studies on modulating the intestinal microbiome for therapeutic purposes have grasped a significant attention, of which the role of fecal microbiota transplantation (FMT) has been emphasized. METHODS: In the current study, we evaluated the effect of FMT on gut functions in Escherichia coli (E. coli) infection by using mice model. Moreover, we also investigated the subsequently dependent variables of infection, i.e., body weight, mortality, intestinal histopathology, and the expression changes in tight junction proteins (TJPs). RESULTS: The FMT effectively decreased weight loss and mortality to a certain extent with the restoration of intestinal villi that resulted in high histological scores for jejunum tissue damage (p < 0.05). The effect of FMT on alleviating the reduction of intestinal TJPs was also proved by immunohistochemistry analysis and mRNA expression levels. Moreover, the abundance of health-threatening bacteria, belonging to phylum Proteobacteria, family Enterobacteriaceae and Tannerellaceae, genus Escherichia-Shigella, Sphingomonas, Collinsella, etc., were significantly increased, whereas beneficial bacteria, belonging to phylum Firmicutes, family Lactobacillaceae, genus Lactobacillus were decreased in the gut of infected mice. Furthermore, we sought to investigate the association of clinical symptoms with FMT treatment with modulation in gut microbiota. According to beta diversity, the microbial community of gut microbiota results reflected the similarities between non-infected and FMT groups. The improvement of the intestinal microbiota in FMT group was characterized by the significant high level of beneficial microorganisms with the synergistic decrease of Escherichia-Shigella, Acinetobacter, and other taxa. CONCLUSION: The findings suggest a beneficial host-microbiome correlation following fecal microbiota transplanatation for controlling gut infections and pathogens-associated diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Transplante de Microbiota Fecal/métodos , Escherichia coli , Fezes/microbiologia
16.
Ecotoxicol Environ Saf ; 253: 114648, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812873

RESUMO

Lead (Pb) contamination has been affecting public health for decades. As a plant-derived medicine, the safety and effectiveness of Emblica officinalis (E. officinalis) fruit extract has been emphasized. The current study focused on mitigating the adverse effects of lead (Pb) exposure in reducing its toxicity worldwide. According to our findings, E. officinalis significantly improved weight loss and colon length shortening (p < 0.05 or p < 0.01). The data of colon histopathology and serum levels of inflammatory cytokines indicated a positive impact to the colonic tissue and inflammatory cell infiltration in a dose-dependent manner. Moreover, we confirmed the expression level improvement of tight junction proteins (TJPs), including ZO-1, Claudin-1, and Occludin. Furthermore, we found that the abundance of some commensal species necessary for maintaining homeostasis and other beneficial function decreased in Pb exposure model, while a remarkable reversion impact was noticed on the intestinal microbiome composition in the treatment group. These findings were consistent with our speculations that E. officinalis could mitigate the adverse effects caused by Pb in alleviating intestinal tissue damage, intestinal barrier disruption, and inflammation. Meanwhile, the variations in gut microbiota might drive the fulfilling current impact. Hence, the present study could provide the theoretical basis for mitigating intestinal toxicity induced by Pb exposure with the help of E. officinalis.


Assuntos
Microbioma Gastrointestinal , Phyllanthus emblica , Camundongos , Animais , Chumbo/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos Endogâmicos C57BL
17.
Vet Sci ; 10(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36669047

RESUMO

A total of 1158 cats with feline upper respiratory tract infection were incorporated from twenty animal hospitals in Wuhan, China, from April 2019 to April 2022 to investigate the epidemiology of feline calicivirus (FCV), herpesvirus-1 (FHV-1), Mycoplasma felis (M. felis) and Chlamydia felis (C. felis) for the development of a geographically-specific FCV vaccine with reference to prevalence and risk factors for infection. The 871 samples (75.2%) of kittens were younger than 12 months, of which 693 were males, and 456 were females. Among the samples, 443 were British shorthair cats, accounting for 38.3%, and 252 were Chinese rural cats, accounting for 21.8%. PCR/RT-PCR detection of the above four viruses (FCV, FHV-1, M. felis, and C. felis) in the upper respiratory tract of cats showed that the total positive samples were 744 (64.3%), including 465 positive samples of feline calicivirus, accounting for 40.2% of the total 1158 samples. There were 311 positive samples of M. felis, accounting for 26.9% of the total samples, ranked second in clinical practice. The 180 positive samples of feline herpesvirus accounted for 15.5%, and 85 positive samples of Chlamydia felis accounted for 7.3%. Among them, the number of positive samples of single pathogenic infections was 493, accounting for 66.3% of the total 744 positive samples. Double, triple, and quadruple infections accounted for 28.2%, 5.0%, and 0.5%, respectively, with the highest proportion of single infections. The molecular biological characteristics of the 17 isolated FCVd strains in Wuhan were further analyzed. It was found that the F9 vaccine strain and the antigenic epitopes in the 5'HVR of the E region were collated with the F9 vaccine strain. Moreover, phylogenetic tree analysis showed that the strains related to the F9 and 255 vaccines were distantly related, leading to the failure of the vaccine. In addition, the strains associated with the F9 and 255 vaccines were distant, which might lead to vaccine failure in anticipation of the development of a more phylogenetically close FCV vaccine in China and may require the development of a vaccine for a locally related FCV strain.

18.
Sci Total Environ ; 856(Pt 1): 159089, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174690

RESUMO

The widespread presence and accumulation of microplastics (MPs) in organisms has led to their recognition as a major global ecological issue. There is a lot of data on how MPs affect the physiology and behavior of aquatic species, but the effects of MPs on poultry are less understood. Therefore, we aimed to explore the adverse effects and mechanisms of MPs exposure to chicken health. Results indicated that MPs exposure decreased growth performance and antioxidant ability and impaired chickens' intestine, liver, kidney, and spleen. Additionally, the gut microbiota in chickens exposed to MPs showed a significant decrease in alpha diversity, accompanied by significant alternations in taxonomic compositions. Microbial taxonomic investigation indicated that exposure to MPs resulted in a significant increase in the relative proportions of 11 genera and a distinct decline in the relative percentages of 3 phyla and 52 genera. Among decreased bacterial taxa, 11 genera even couldn't be detected in the gut microbiota of chickens exposed to MPs. Metabolomics analysis indicated that 2561 (1190 up-regulated, 1371 down-regulated) differential metabolites were identified, mainly involved in 5 metabolic pathways, including D-amino acid metabolism, ABC transporters, vitamin digestion and absorption, mineral absorption, and histidine metabolism. Taken together, this study indicated that MPs exposure resulted in adverse health outcomes for chickens by disturbing gut microbial homeostasis and intestinal metabolism. This study also provided motivation for environmental agencies worldwide to regulate the application and disposal of plastic products and decrease environmental contamination.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Animais , Plásticos/toxicidade , Galinhas , Antioxidantes/farmacologia , Homeostase
19.
J Hazard Mater ; 444(Pt A): 130368, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423455

RESUMO

Pesticide thiram is widely used in agriculture and has been demonstrated to cause tibial dyschondroplasia (TD) in birds. However, the underlying mechanism remains unclear. This work used multi-omics analysis to evaluate the molecular pathways of TD in broilers that were exposed to low level of thiram. Integrative analysis of transcriptomic, proteomic, and metabolomic revealed thiram activity in enhancing pathological ECM remodeling via attenuating the glycolysis pathway and activating the hexosamine and glucuronic acid pathways. Intriguingly, we found hyperglycemia as a crucial factor for ECM overproduction, which resulted in the development of TD. We further demonstrated that high glucose levels are caused by islet secretion dysfunction in thiram-treated broilers. A combination of factors, including lipid disorder, low-grade inflammation, and gut flora disturbance, might contribute to the dysregulation of insulin secretion. The current work revealed the underlying toxicological mechanisms of thiram-induced tibial dyschondroplasia through blood glucose disorder via the gut-pancreas axis in chickens for the first time, which makes it easier to figure out the health risks of pesticides for worldwide policy decisions.


Assuntos
Hiperglicemia , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Proteômica , Pâncreas
20.
Environ Sci Pollut Res Int ; 30(12): 34188-34202, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36508105

RESUMO

Tibial dyschondroplasia (TD) is a developmental cartilaginous disease due to thiram toxicity. The abnormity of chondrocytes and insufficient angiogenesis within the growth plate are the major factors leading to the occurrence of TD in most cases. In the current study, we evaluated the beneficial effects of ginsenoside (Rg1) against thiram-induced TD for knowing the possible underlying mechanisms in broiler chickens through in vivo and in vitro assessment. Arbor acres broilers (1-day-old, n = 120) were randomly divided for the in vivo evaluation. The control broilers were fed under normal conditions during the whole experiment cycle (18 days). The TD broilers were fed with 50 mg/kg thiram, while the treatment group was given 40 mg/kg of Rg1. According to our findings, thiram caused a decrease in production performance and tibia parameters (p < 0.05), which were significantly reversed by Rg1 administration. In addition, the results from the histological evaluation showed that the proliferative zone had a smaller number of blood vessels, surrounded by inviable chondrocytes, proving apoptosis during the occurrence of TD, while Rg1 treatment significantly increased blood vessels and decreased apoptotic cells. Furthermore, it was found that Rg1 effectively ameliorated the angiogenesis by regulation of HIF-1α/VEGFA/VEGFR2 signaling pathway and the chondrocytes' apoptosis via the mitochondrial pathway. Hence, these findings suggest that Rg1 might be a perfect choice in the prevention and treatment of TD via regulating chondrocytes apoptosis and angiogenesis. Also, it might be a potential therapeutic drug for humans to overcome different bone disorders, involving chondrocytes.


Assuntos
Ginsenosídeos , Osteocondrodisplasias , Humanos , Animais , Tiram/toxicidade , Galinhas , Ginsenosídeos/efeitos adversos , Condrócitos/patologia , Apoptose , Osteocondrodisplasias/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...